In this paper we study several existing notions of well-posedness for vector optimization problems. We distinguish them into two classes and we establish the hierarchical structure of their relationships. Moreover, we relate vector well-posedness and well-posedness of an appropriate scalarization. This approach allows us to show that, under some compactness assumption, quasiconvex problems are well-posed.
Nel rispetto della Direttiva 2009/136/CE, ti informiamo che il nostro sito utilizza i cookies. Se continui a navigare sul sito, accetti espressamente il loro utilizzo.