Autori: Wu, Xue, Chen, Chixiang, WAng, Ming
Titolo: A three-stage approach to identify biomarker signatures for cancer genetic data with survival endpoints
Periodico: Statistical methods & applications : Journal of the Italian Statistical Society
Anno: 2024 - Volume: 33 - Fascicolo: 3 - Pagina iniziale: 863 - Pagina finale: 883

The identification of prognostic and predictive biomarker signatures is crucial for drug development and providing personalized treatment to cancer patients. However, the discovery process often involves high-dimensional candidate biomarkers, leading to inflated family-wise error rates (FWERs) due to multiple hypothesis testing. This is an understudied area, particularly under the survival framework. To address this issue, we propose a novel three-stage approach for identifying significant biomarker signatures, including prognostic biomarkers (main effects) and predictive biomarkers (biomarker-by-treatment interactions), using Cox proportional hazard regression with high-dimensional covariates. To control the FWER, we adopt an adaptive group LASSO for variable screening and selection. We then derive adjusted p-values through multi-splitting and bootstrapping to overcome invalid p values caused by the penalized approach’s restrictions. Our extensive simulations provide empirical evaluation of the FWER and model selection accuracy, demonstrating that our proposed three-stage approach outperforms existing alternatives. Furthermore, we provide detailed proofs and software implementation in R to support our theoretical contributions. Finally, we apply our method to real data from cancer genetic studies




SICI: 1618-2510(2024)33:3<863:ATATIB>2.0.ZU;2-Z

Esportazione dati in Refworks (solo per utenti abilitati)

Record salvabile in Zotero

Biblioteche ACNP che possiedono il periodico
Nel rispetto della Direttiva 2009/136/CE, ti informiamo che il nostro sito utilizza i cookies. Se continui a navigare sul sito, accetti espressamente il loro utilizzo.