Autore: Haschka, Rouven E.
Titolo: Endogeneity in stochastic frontier models with 'wrong' skewness: copula approach without external instruments
Periodico: Statistical methods & applications : Journal of the Italian Statistical Society
Anno: 2024 - Volume: 33 - Fascicolo: 3 - Pagina iniziale: 807 - Pagina finale: 826

Stochastic frontier models commonly assume positive skewness for the inefficiency term. However, when this assumption is violated, efficiency scores converge to unity. The potential endogeneity of model regressors introduces another empirical challenge, impeding the identification of causal relationships. This paper tackles these issues by employing an instrument-free estimation method that extends joint estimation through copulas to handle endogenous regressors and skewness issues. The method relies on the Gaussian copula function to capture dependence between endogenous regressors and composite errors with a simultaneous consideration of positively or negatively skewed inefficiency. Model parameters are estimated through maximum likelihood, and Monte Carlo simulations are employed to evaluate the performance of the proposed estimation procedures in finite samples. This research contributes to the stochastic frontier models and production economics literature by presenting a flexible and parsimonious method capable of addressing wrong skewness of inefficiency and endogenous regressors simultaneously. The applicability of the method is demonstrated through an empirical example.




SICI: 1618-2510(2024)33:3<807:EISFMW>2.0.ZU;2-Z

Esportazione dati in Refworks (solo per utenti abilitati)

Record salvabile in Zotero

Biblioteche ACNP che possiedono il periodico
Nel rispetto della Direttiva 2009/136/CE, ti informiamo che il nostro sito utilizza i cookies. Se continui a navigare sul sito, accetti espressamente il loro utilizzo.