Autori: Liu, Bingqi, Pang, Tianxiao
Titolo: Weighted composite quantile inference for nearly nonstationary autoregressive models
Periodico: Statistical methods & applications : Journal of the Italian Statistical Society
Anno: 2024 - Volume: 33 - Fascicolo: 5 - Pagina iniziale: 1337 - Pagina finale: 1379

In this paper, we focus on the following nearly nonsationary autoregressive model: , , where with c a non-zero constant and a sequence of positive constants increasing to such that as , and is a sequence of independent and identically distributed random variables which are in the domain of attraction of the normal law with zero mean and possibly infinity variance. The weighted composite quantile estimate of is examined, and the corresponding limiting distributions under the cases of and are established. Monte Carlo simulations are conducted to illustrate the theoretical results on finite-sample performance. The simulation results show that the weighted composite quantile estimate method is more robust and efficient than the composite quantile estimate method in terms of bias and accuracy, and we employ this estimator to analyze a real-world data set.




SICI: 1618-2510(2024)33:5<1337:WCQIFN>2.0.ZU;2-O

Esportazione dati in Refworks (solo per utenti abilitati)

Record salvabile in Zotero

Biblioteche ACNP che possiedono il periodico
Nel rispetto della Direttiva 2009/136/CE, ti informiamo che il nostro sito utilizza i cookies. Se continui a navigare sul sito, accetti espressamente il loro utilizzo.