Autori:
Plaia, Antonella,
Sciandra, Mariangela ,
Albano, Alessandro,
Garcia Lapresta, Jose LuisTitolo:
Clustering alternatives in preference-approvals via novel pseudometricsPeriodico:
Statistical methods & applications : Journal of the Italian Statistical SocietyAnno:
2024 - Volume:
33 - Fascicolo:
1 - Pagina iniziale:
61 - Pagina finale:
87Preference-approval structures combine preference rankings and approval voting for declaring opinions over a set of alternatives. In this paper, we propose a new procedure for clustering alternatives in order to reduce the complexity of the preference-approval space and provide a more accessible interpretation of data. To that end, we present a new family of pseudometrics on the set of alternatives that take into account voters’ preferences via preference-approvals. To obtain clusters, we use the Ranked k-medoids (RKM) partitioning algorithm, which takes as input the similarities between pairs of alternatives based on the proposed pseudometrics. Finally, using non-metric multidimensional scaling, clusters are represented in 2-dimensional space.
SICI: 1618-2510(2024)33:1<61:CAIPVN>2.0.ZU;2-#
Esportazione dati in Refworks (solo per utenti abilitati)
Record salvabile in Zotero
Biblioteche ACNP che possiedono il periodico